Як знайти найменший спільний знаменник

Як знайти найменший спільний знаменник

Знаменником арифметичної дробу a / b називають число b, що показує розміри часток одиниці, з яких складена дріб. Знаменником алгебраїчній дробу A / B називають алгебраїчне вираз B. Для виконання арифметичних дій з дробами їх необхідно привести до найменшого спільного знаменника.

Вам знадобиться

Для роботи з алгебраїчними дробами при знаходженні найменшого спільного знаменника необхідно знати методи розкладання многочленів на множники.

Інструкція

  1. Розглянемо приведення до найменшого спільного знаменника двох арифметичних дробів n / m і s / t, де n, m, s, t — цілі числа. Зрозуміло, що ці дві дробу можна привести до будь-якого знаменника, що діляться на m і на t. Але зазвичай намагаються привести до найменшого спільного знаменника. Він дорівнює найменшого спільного кратного знаменників m і t даних дробів. Найменше спільне кратне (НСК) чисел — це найменше позитивне число, що ділиться одночасно на всі задані числа. Тобто в нашому випадку необхідно знайти найменше спільне кратне чисел m і t. Позначається як НОК (m, t). Далі знаки множаться на відповідні множники: (n / m) * (НОК (m, t) / m), (s / t) * (НОК (m, t) / t).
  2. Наведемо приклад знаходження найменшого спільного знаменника трьох дробів: 4 / 5, 7 / 8, 11/14. Для початку розкладемо знаменники 5, 8, 14 на множники: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2 ^ 3, 14 = 2 * 7. Далі обчислюємо НОК (5, 8, 14), перемноживши всі числа, що входять хоча б в одне з розкладів. НОК (5, 8, 14) = 5 * 2 ^ 3 * 7 = 280. Зауважимо, що якщо множник зустрічається в розкладанні кількох чисел (множник 2 в розкладанні знаменників 8 і 14), то беремо множник більшою мірою (2 ^ 3 в нашому випадку).

    Отже, найменший спільний знаменник дробів отриманий. Він дорівнює 280 = 5 * 56 = 8 * 35 = 14 * 20. Тут ми отримуємо числа, на які треба помножити дробу з відповідними знаменниками, щоб привести їх до найменшого спільного знаменника. Отримуємо 4 / 5 = 56 * (4 / 5) = 224 / 280, 7 / 8 = 35 * (7 / 8) = 245/280, 11/14 = 20 * (11/14) = 220/280.
  3. Приведення до найменшого спільного знаменника алгебраїчних дробів виконується за аналогією з арифметичними дробами. Для наочності розглянемо задачу на прикладі. Нехай дано дві дробу (2 * x) / (9 * y ^ 2 + 6 * y + 1) і (x ^ 2 + 1) / (3 * y ^ 2 + 4 * y + 1). Розкладемо на множники обидва знаменника. Зауважимо, що знаменник першого дробу являє собою повний квадрат: 9 * y ^ 2 + 6 * y + 1 = (3 * y + 1) ^ 2. Для розкладання другий знаменника на множники необхідно застосувати метод угруповання: 3 * y ^ 2 + 4 * y + 1 = (3 * y + 1) * y + 3 * y + 1 = (3 * y + 1) * (y + 1).

    Таким чином найменший спільний знаменник дорівнює (y + 1) * (3 * y + 1) ^ 2. Множимо першого дробу на многочлен y + 1, а другу дріб на многочлен 3 * y + 1. Отримуємо дробу, приведені до найменшого спільного знаменника:

    2 * x * (y + 1) / (y + 1) * (3 * y + 1) ^ 2 і (x ^ 2 + 1) * (3 * y + 1) / (y + 1) * (3 * y + 1) ^ 2.

Корисні поради

Після розкладання чисел або многочленів на множники виконайте перевірку — порахуйте твір всіх множників і переконайтеся, що вийшли початкові значення.