Як знайти висоту трапеції формула

Як знайти висоту трапеції формула

Трапеція являє собою чотирикутник, у якого дві сторони паралельні між собою. Трапеція є опуклим багатокутником. Висоту трапеції обчислити досить легко.

Вам знадобиться

Знати площа трапеції, довжини її підстав, а також і довжину середньої лінії.

Інструкція

  1. Для того, щоб обчислити площу трапеції, необхідно скористатися наступною формулою:

    S = ((a + b) * h) / 2, де a і b — підстави трапеції, h — висота даної трапеції.

    У тому випадку, якщо площа і довжини підстав відомі, то знайти висоту можна за формулою:

    h = (2 * S) / (a ​​+ b)
  2. Якщо в трапеції відомі її площа і довжина середньої лінії, то знайти її висоту не складе труднощів:

    S = m * h, де m — середня лінія, звідси:

    h = S / m.
  3. Для того, щоб обидва способи були більш зрозумілими, можна навести кілька прикладів.

    Приклад 1: довжина середньої лінії трапеції 10 см, її площа 100 см ². Для знаходження висоти цієї трапеції треба зробити дію:

    h = 100/10 = 10 см

    Відповідь: висота даної трапеції 10 см

    Приклад 2: площа трапеції 100 см ², довжини підстав рівні 8 см і 12 см. Для знаходження висоти цієї трапеції потрібно виконати дію:

    h = (2 * 100) / (8 +12) = 200/20 = 10 см

    Відповідь: висота даної трапеції 20 см

Зверніть увагу

Існує кілька видів трапецій:

Рівнобедрена трапеція — це така трапеція, в якої бічні сторони рівні між собою.

Прямокутна трапеція — це трапеція, у якій один з внутрішніх кутів дорівнює 90 градусам.

Варто зазначити, що в прямокутній трапеції висота збігається з довжиною сторони при прямому куті.

Навколо трапеції можна описати коло, або вписати її всередину даної фігури. Вписати окружність можна лише в тому випадку, якщо сума підстав її дорівнює сумі протилежних сторін. Описати ж коло можна тільки навколо рівнобедреної трапеції.

Корисні поради

Паралелограм є окремим випадком трапеції, адже визначення трапеції ніяк не суперечить визначенню паралелограма. Паралелограм — це чотирикутник, протилежні сторони якого паралельні між собою. У трапеції ж у визначенні мова ведеться лише про пару його сторін. Тому будь-який паралелограм є і трапецією. Зворотне твердження невірне.